The binomial distribution gives the discrete probability distribution $P_{p}(k \mid N)$ of obtaining exactly k successes out of N trials where the result of each trial is true with a probability of p and false with a probability of $q=1-p$.

$$
\begin{align*}
P_{p}(k \mid n) & =\binom{N}{k} p^{k} q^{N-k}, \tag{1}\\
& =\frac{N!}{k!(N-k)!} p^{k}(1-p)^{N-k}, \tag{2}
\end{align*}
$$

where $\binom{N}{n}$ is a binomial coefficient.

We can find $P=$ "the probability that 10 or less users are active." Then $1-P=$ " the probability that more than 10 users are active." We find P as

$$
\begin{equation*}
\sum_{k=0}^{10}\binom{35}{k} p^{k} q^{N-k} \tag{3}
\end{equation*}
$$

