

Oracle Business Rules: Technical
Overview

An Oracle White Paper
February 2007

Oracle Business Rules: Technical Overview Page 2

Oracle Business Rules: Technical Overview

INTRODUCTION
Changing markets, increasing competitive pressures and evolving customer needs
are placing greater pressure on businesses to adjust their policies and decisions at a
faster pace. Further, there is an increasing desire among business users to get into
the driver seat for defining how the business is run. Moreover, regulatory
constraints are increasingly demanding that businesses have transparency and
consistency in their decision making, and that they are able to certify compliance.
Business Rules technology has emerged as the solution for addressing these
requirements.

Oracle Business Rules is a leading edge Business Rules product. It is part of the
Fusion Middleware stack. It is also a core component for present and future Oracle
Fusion Middleware and Fusion Applications products. Along with Oracle BPEL
PM, BAM and other products, Oracle Business Rules enables its customers to
become more agile.

THE BUSINESS RULES TECHNOLOGY
Business Rules technology enables automation of business rules; it also enables
extraction of business rules from procedural logic such as Java code or BPEL
processes. Typically, the pillars of Business Rules technology are declarative
specification and inferencing.

Declarative Specification
Declarative means declaring the intent without encumbering it with control flow.

If a Customer is a Premium customer, offer them 10% discount

If a Customer is a Gold customer, offer them 5% discount

Figure 1: Example of Declarative Specification

Oracle Business Rules: Technical Overview Page 3

The example in Figure 1 shows how a premium customer and a gold customer are
defined. There is no control flow specification on the order of the rules execution.
This is where a Business Rules engine comes in – it automatically figures out the
correct and high performance order of execution.

Benefits of Declarative Specification

When business rules are implemented in procedural logic such as COBOL or Java
code, it becomes a difficult exercise to understand the business rules, which
requires navigating complex control flows and invocation sequences. Also, the
impact of changing a business rule is difficult to understand because the
surrounding control flow may or may not lead to the desired results; e.g. the control
flow may not be rechecking for other rules that become applicable with this change.
Finally, business users have no visibility into the business rules.

Use of declarative specification addresses the above issues and:

1. Makes business rules transparent as they are cleanly expressed in one
place. This not only addresses the business need to have visibility, but also
makes life easier for IT.

2. Makes changing of business rules easier. Not only is it obvious what
needs to be changed due to the enhanced transparency, but also makes
changes predictable, as the business rules engine will automatically do the
right flow.

3. The expression of the business rules matches the business problem being
solved.

Inferencing
Some times when a rule executes because of its execution other rules may become
applicable. For example in Figure 2, when the third rule determines that a customer
is a premium customer, all rules for premium customers should be evaluated.
Inferencing is the ability of the rule engine to automatically infer such dependencies
and evaluate the needed rules.

If a Customer is a Premium customer, offer them 10% discount

If a Customer is a Gold customer, offer them 5% discount

If a Customer spends > 1000, make them Premium customer

Customer
Spends

1500
Premium
Customer

Offer 10%
discount

Figure 2: Example of Inferencing

Oracle Business Rules: Technical Overview Page 4

In the example shown in Figure 2, when a customer spends 1500, the third rule
fires designating the customer as a Premium customer. An inference capable rule
engine then automatically evaluates the first rule, giving the customer 10%
discount.

Benefits of Inferencing

Inferencing enables complex business rules to be declaratively specified in a
modular fashion. For example, the example shown in Figure 2 separates the
definition premium customers and their treatment enabling each to be changed
independent of the other.

HIGH VALUE USE CASES FOR BUSINESS RULES
While Business Rules technology may be applied to a broad spectrum of problems,
following are some guidelines to help selection of problems for which Business
Rules technology yield highest value:

• Volatility – Rules that change often are a good candidate for implementing
with Business Rules technology. The ease of change provided by Business
Rules technology will lead to significant cost savings over time.

• Cost of Implementation Lags - There may be some situations when the rules
don’t change that often, but when they do, the business cost of delay in
implementation is too high. These high impact rules are good candidates
for implementing with Business Rules technology.

• Ownership – Rules that business users want to own, author or edit are good
candidates for implementing with Business Rules technology. Business
users relate easily to the declarative and other metaphors supported by
Business Rules technology.

• Compliance – Rules that have compliance requirements are good candidates
for implementing with Business Rules technology.

• Complexity – Some problems naturally lend themselves to business rules as
implementing them in traditional procedural logic would be too complex.
Characteristics of such problems include a large number of rules and
complex dependencies between them. A very good example of this class
of problems is product configuration.

Oracle Business Rules: Technical Overview Page 5

ORACLE BUSINESS RULES
Oracle Business Rules provides high performance and easy to use implementation
of Business Rules technology. It provides easy to use authoring environment as well
as a very high performance inference capable rules engine. Oracle Business Rules is
part of the fusion middleware stack and will be a core component of many Oracle
products including both middleware and applications.

The components of the Oracle Business Rules product include:

• Rule Author – Rule Author is a web based graphical authoring environment
that enables creation of business rules using a click and select user
experience.

RETE Rules “Engine”

CA

Java FactsXML Facts

D
ec

is
io

n
Se

rv
ic

e

BPELBPEL
Java

Application

/** @Foo **/
method Foo(....)
{

Java
Application

/** @Foo **/
method Foo(....)
{

Rules SDK

Rules Repository

Dictionary 1
Rule Set A

If … Then ...
If … Then ...
If … Then ...

Rule Set B

Dictionary 2

Dictionary 1
Rule Set A

If … Then ...
If … Then ...
If … Then ...

Rule Set B

Dictionary 2

Oracle Rule AuthorOracle Rule Author Custom AuthorCustom Author
Custom AuthorCustom Author

R
ul

es
 A

PI
(J

SR
 9

4)

Figure 3: Oracle Business Rules overview

Figure 4: Oracle Rule Author provides simple click and select authoring

Oracle Business Rules: Technical Overview Page 6

• Rules Engine – Rules engine is an inference capable Rete
(http://en.wikipedia.org/wiki/Rete_algorithm) rules engine based on the
Jess product (http://www.jessrules.com/jess/index.shtml) from Sandia
labs.

• Rules Repository – The Rules repository enables rules to be organized in
rulesets and rulesets in dictionaries. It also supports versioning of
dictionaries. In current releases, the repository may be file based or
webDAV based. In addition, APIs are available to plug in any desired
repository. From release 11 onwards, Oracle MDS will be used as the
repository consistent with all Oracle middleware and applications
products.

• Rules SDK – The Rules SDK provides complete access to the Rule
Repository and is designed to facilitate creation of rule authoring
environments. The Rule Author itself uses the SDK. It is also used by the
Workflow Application in Oracle BPEL PM to provide workflow specific
authoring of rules. It may be used to build any custom authoring
environments.

• Rules Language (RL) – Oracle replaced Jess’ lisp like language with a Java
based language called Rules Language, or commonly just RL. Typically, RL
would be used directly by users only for writing supporting functions. The
Rule Author abstracts away rest of RL from users.

• Decision Service – Decision Service enables Oracle business rules to be
invoked as a web service from BPEL or other Web Service clients. The
Decision Service tooling in Oracle BPEL PM provides seamless
integration between BPEL and Business Rules.

• Rules API (JSR94) – Rules APIs including JSR 94 APIs are available to
invoke Oracle Business Rules from any Java program.

Oracle Business Rules: Technical Overview Page 7

Business User Enablement with Oracle Business Rules
Oracle Business Rules provides multiple options for involving business users
depending on the sophistication of the business user as well as the level of control
desired. These options include:

• Unrestricted use of rule editing in Rule Author – Since the rule author is easy to
use and provides a click and select experience, somewhat sophisticated
business users desiring complete control over business rules can use it.

• Tweaking knobs with variables – Developers may use variables to expose
simple knobs such as thresholds that the business users can control.

• Customization – Customization is a feature in the Rule Author that allows
only those facets of a business rule to be changed that have a constraint
associated with them and only within the limits of the constraint. This
feature can be used to enable business users control over only certain
facets and at the same time prevent them from illegal changes.

Figure 5: Exposing knobs for business users to turn

Figure 6: Customization within constraints

Oracle Business Rules: Technical Overview Page 8

• Custom Authoring Environments – Some times a custom authoring
environment is called for truly empowering the business users. This
enables business users to control the rules from within the context of their
business applications. In addition, it enables the metaphor to be
completely tailored to the problem. The authoring is also simplified by
limiting it to the problem on hand.

In addition to the above, RL Functions may be used to abstract complexity from
business users.

In release 11, Oracle Business rules will further improve business user
empowerment by introducing support for Decision Tables as well as simplifying
the overall user experience.

Run Time Architecture
Oracle Business Rules may be run in two different modes:

• Embedded Jar file – Typically, Java applications invoking the rules engine will
embed the rules engine as a jar file (rl.jar). In this case, the rules engine
scales and distributes just as rest of the application. Rule sessions may be
pooled and cached for optimizing performance. These are discussed in the
performance best practices section.

• Decision Service – Rules engine may be used as a Decision Service by BPEL
and other clients desiring a service interface. The Decision Service is an
application server servlet application; it scales and distributes accordingly.
In this case, the Decision Service handles the session pooling and caching.

Figure 7: Example of a custom authoring environment (Excel spreadsheet)
built using SDK

Oracle Business Rules: Technical Overview Page 9

RULE-ENABLING APPLICATIONS AND PROCESSES
As discussed above Oracle Business Rules may be used to extract business rules
from applications or business processes using either the Java API interfaces or the
Decision Service interface. Business Processes will use the Decision Service
interface; Java applications including JSP and JSF pages may prefer to use the Java
API interface. The steps for rule-enabling applications and processes include:

Using the Decision Service Interface
1. Identify the XML Schema for the data you want to pass as input or get

back as output. Import them as XML Facts

2. Follow steps for developing business rules

3. Create a Decision Service using Decision Service wizard in Oracle BPEL
PM

4. Add a Decide activity in your BPEL process. Map process variables to
input facts and output facts back to process variables. (For non BPEL,
Decision Service clients, invoke as Web Service)

Using the Java API
1. Identify the Java objects you want to pass as input or get back as output.

Import them as Java Facts

2. Follow steps for developing business rules

3. Modify your Java application logic to invoke the Rule Engine.

Modifying Java application logic to invoke the Rule Engine
The business analyst should determine what functionality of the application should
be rule-driven. See discussion above on identifying high value use cases.

If an existing application is being rule-enabled, the programmer will need to replace
procedural functionality implementing the rules with new rule-driven functionality.
Note that the procedural code may need to be "mined" to extract the existing hard-
coded rules.

The Java application code needs to call Rule APIs to accomplish the following:

1. Load the appropriate rule repository and dictionary

2. Create a rule session

3. Execute RL definitions for rules, functions, and variables

4. Assert some business objects as initial facts

5. Run an inference cycle

6. Retrieve results

Oracle Business Rules: Technical Overview Page 10

For more details, please see
http://www.oracle.com/technology/products/ias/business_rules/files/how-to-
rules-java.zip.

Developing Business Rules
1. Import the XML Schemas and Java classes you need to reason on as XML

Facts and Java Facts

2. Provide a business vocabulary by editing the fact definitions to:

a. Provide business friendly aliases (the tool provides default aliases)

b. Hide elements to focus rule authors’ experience

3. Import any needed supporting Java packages such as Date or BigInteger

4. Define Variables.

5. Define Constraints.

6. Define RL Functions that will simplify rule authoring. Please see Using RL
Functions below. In particular, develop functions that can be used to test
the rules.

7. Define the Rulesets and Rules

8. Test

Please see the section Oracle Business Rule Technical Details below for details on
the steps above.

Oracle Business Rules: Technical Overview Page 11

ORACLE BUSINESS RULE TECHNICAL DETAILS
The section Oracle Business Rules above provides an overview of the Oracle
Business Rules product. The discussion in this section complements it by adding
technical details.

Rule Author
As discussed in the section Oracle Business Rules above, the Rule Author is a
browser-based tool for creating and customizing rules, and for defining the facts,
functions, and variables on which the rules operate.

A group of related definitions and rules are stored together in a dictionary inside
the repository.

Facts

Fact definitions come from three places:

1. selected properties and methods of a Java class,

2. selected attributes and sub-elements of an XML element or complexType,

3. an RL class.

Fact definitions imported from Java and XML are typically used to create rules that
examine the business objects of the rule-enabled application, or to return results to
the application. Fact definitions based on an RL class are typically used to create
intermediate facts that are used to trigger other rules in an inference chain.

Constraints

Constraint definitions are used to mark portions of rules as customizable (Please
see Customization above for discussion of the concept.). For example, the discount
to offer to a GOLD customer could be constrained to be within the range 5..25
percent.

Variables

Variables share information among several rules and functions. For example, if the
10% GOLD discount is used in several rules, a variable "GOLD discount" should
be used instead of the hard coded 10% so that if it is customized, it can be done in
a single place.

Variables are also useful for exposing controls such as thresholds to business users.
In addition, they may be used for holding the results of rules evaluation.

Functions

Function definitions can be used to share the same or similar expression among
several rules, and to return results to the application . Functions can have
parameters, making them more generally useful than variables.

Business Rules are expressed
using defined facts, constraints,

variables, and functions.

Facts cause rules to fire, and firing
rules can create more facts, which

in turn can fire more rules. This
process is called an inference

cycle.

Variables and functions make rule
sets modular and maintainable.

Oracle Business Rules: Technical Overview Page 12

function discount(String type) {

 if (type == "GOLD") { return 10; }

 else if (type == "SILVER") { return 5; }

}

Functions are defined using the Oracle Rule Language (RL) syntax, which is
described later in this paper.

Rulesets and Rules

A ruleset is a collection of rules that are all meant to run at the same time. A rule
consists of a condition, or if part, and a list of actions, or then part.

if - The condition part of a rule activates the rule whenever there is a combination
of facts that makes the condition part true. In some respects, the rule condition is
like a query over the facts in the rule engine, and for every row returned from the
query, the rule is activated.

then - The action part of a rule is executed when the rule fires. In order for the
rule to fire, it must be activated and the RL function run must be called. Rules fire
sequentially, not in parallel. Common rule actions include invoking functions or
methods, and asserting (creating), retracting (deleting), or modifying facts. Note
that rule actions often change the set of rule activations and thus change the next
rule to fire.

Rule Repository
The Rule Repository is the persistence mechanism underlying the Rule Author. It
is logically organized as a collection of dictionaries. The repository provides two
APIs for programmatic access – the Rule SDK API and the RL Generation API.

Dictionary

A dictionary is a set of XML files that stores the definitions, rule sets, and
customizations that are created using the Rule Author. A dictionary typically stores
all the rules and definitions for a rule-enabled application. A Rule Repository can
have several dictionaries, but they would typically be used for different applications
or for different versions of an application.

Rule SDK API

The Rule SDK API is the interface between the Rule Author and the Rule
Repository. This API supports both thick and thin GUI clients in the following
ways:

• dictionary objects (rules, fact definitions, etc.) can be retrieved as nested
collections of name-value pairs for easy binding to GUI controls such as
navigators, property sheets, and drop-down lists,

• dictionary objects can be created with appropriate default values, and

A rule has the form:

if conditions
then actions

The Rule Repository stores Rule
Author information and generates RL

for execution by the Rule Engine.

Oracle Business Rules: Technical Overview Page 13

• dictionary objects can be modified with extensive integrity checking.

Because the Rule SDK API is implemented by the Rule Repository, developers can
use this API for developing custom rule authoring tools that conform to the look
and feel of their rule-enabled applications.

RL Generation API

The RL Generation API is the interface between the Rule Engine and the Rule
Repository. This API generates executable Rule Language code for the Rule
Engine from the definitions and rules in a dictionary.

Rule Engine
As discussed in the section Run Time Architecture above, the Rule Engine may be
used in one of two modes: Decision Service and Java Library. Some of the
following discussion including the Rule Session API is not interesting to users of
the Decision Service mode, as the Decision Service application abstracts them.

The Rule Engine is a Java library that a rule-enabled application invokes via the
Rule Session API. The application passes facts, represented as Java or XML
objects, and rules, represented in Rule Language, to the Rule Engine. The Rule
Engine uses the industry-standard Rete algorithm to efficiently fire rules that match
the facts.

Rule Session API

The Rule Session API is the interface between the application and the Rule Engine.
The two most useful methods of the Rule Session API are executeRuleset and
callFunction.

executeRuleset

The executeRuleset method executes an RL program, passed in as a String. Such a
program typically contains rule, function, and variable definitions. The RL program
typically comes from a dictionary in the Rule Repository.

callFunction

The callFunction method executes an RL function. Variants of this method may pass
Java objects to RL functions, and return Java objects from RL functions. The
called function may be a built-in function such as assert, which creates a new fact, or
run, which enables activated rules to fire. Alternatively, the function may have been
defined in a prior call to executeRuleset.

The callFunction method is typically used to

• pass business objects from the application to the Rule Engine, where they
are asserted as facts,

• initiate an inference cycle using the run function, and

The Rule Engine interprets RL. RL
rules can reason on any Java or XML

object. Any Java program can use
the Rule Engine.

Oracle Business Rules: Technical Overview Page 14

• retrieve results.

Rule Language

The Rule Engine directly executes Oracle Rule Language (RL) RL is interpreted
rather than compiled so that rules may be changed without rebuilding, redeploying,
or even restarting applications. RL features Java-like syntax and type checking. RL
programs can assert any Java object as a fact, and rules can reference any object
property and invoke any method in its condition and actions.

Programmers can use RL as a full-featured rules programming language, or
business analysts can use the Rule Author and RL can be generated from the Rule
Repository behind the scenes. The rule engine has a command line interface for
interactive RL development and debugging.

Rete

The Rule Engine uses the industry-standard Rete algorithm that was first developed
by artificial intelligence researchers in the late 1970s and is at the core of rule
engines from major rule vendors.

The Rete algorithm combines rule conditions for all rules into a single network of
nodes. There is an input node for each fact definition. There is an output node for
each rule. In between input and output nodes are test nodes and join nodes. A
test occurs when a rule condition has a boolean expression. A join occurs when a
rule condition ANDs two facts. Fact references flow from input to output nodes.
A rule is activated when its output node contains fact references. Fact references
are cached throughout the network to speed up recomputing activated rules. When
a fact is added, removed, or changed, a fact change reference is pushed through the
Rete network that updates the caches and the rule activations with only an
incremental amount of work.

The Rete algorithm provides the following benefits:

• independence from rule order – rules can be added and removed without
impacting other rules,

• optimization across multiple rules – rules with common conditions share
nodes in the Rete network, and

• high performance inference cycles – each rule firing typically changes just a
few facts and the cost of updating the Rete network is proportional to the
number of changed facts, not the total number of facts or rules.

Here is an example of a rule in
RL:

rule approvePO {
 if (fact PurchaseOrder po
 && po.amount > 1000
 && po.approvalLevel ==
null)
 {
 po.approvalLevel = "VP";
 assert(po);
 }
}

Rete is the Latin word for network.

Oracle Business Rules: Technical Overview Page 15

DEVELOPMENT BEST PRACTICES

Accessing Data
Since Oracle Business Rules has access to Java methods, it is possible to use Java
(in conjunction with technologies such as Toplink) to fetch data from within Rules.
However, this is not the recommended best practice. It is instead recommended
that you fetch data (in general IO and Database operations) outside of Rules,
possibly using BPEL and its Adapters, and then invoke Rules with all the data it
needs. By doing so, you can handle things such as connection errors and timeouts
in BPEL using its error handling capabilities.

Returning Results
See section 3.12 in Oracle Business Rules User's Guide (http://download-
east.oracle.com/docs/cd/B31017_01/web.1013/b28965/guiadvanced.htm#CIHG
EFCG).

Rule Organization
The best practices for organizing rules and rule sets parallel the practices for
organizing software into classes and packages. A rule set should contain rules
whose evaluation is related to producing the result(s) of that rule set. That is, they
are focused on accomplishing the same goal. For example, rulesets may be
organized such that one ruleset evaluates loan applications, second evaluates credit
reports, and third determines the interest rate and loan amount the applicant
qualifies for.

The number of rules in a rule set should be driven by the application requirements
and by requirements for re-use. A smaller rule set that performs a specific
evaluation with a specific result will be more manageable and more likely to be re-
used. Organizing into rule sets with focused purposes also enables an application
component to only load the rule sets it requires and thus optimize the resources it
uses for rule evaluation. At runtime, the rules are all compiled into a single Rete
network within the rule engine and whether the rules are in one or many rule sets is
not a factor in resource usage.

Rule Set Chaining

When there are rules that need to be shared across rulesets, they should be
organized in their own ruleset. For example, a Credit Processing scenario may have
a rule set by each lender and a common rule set for rules applicable across all
lenders. Such rulesets may be chained by pushing them on the rule stack either
conditionally or unconditionally. Conditional pushing is most commonly used when
some rules are effective only on certain times.

Using RL Functions
Functions are a useful tool to abstract complexity from Rule authors.

Figure 8: Example of using Function to abstract complexity

Oracle Business Rules: Technical Overview Page 16

In the example shown in Figure 8, as part of an approval rule action, it is needed to
set two values: Level.required and Level.reason; moreover, since an approval level
may be required by multiple rules, the Level.reason needs to aggregate all reasons.
Requiring every rule to deal with this requirement would make rule authoring
difficult and error prone. Instead, encapsulating this behavior in a function enables
rule authors to simply specify the Level and the Reason, as shown in the
screenshot.

In the current release of Rule Author, RL function bodies must be entered using a
Java-like syntax (In Release 11, easier authoring of RL Functions similar to Rule
actions will be provided). Therefore, it is not advisable to use RL Functions
(instead of Rulesets) to model rules that business users may change. In general, it is
best to use Functions as helpers to facilitate rule editing (as Rulesets) and not for
modeling rules (instead of rulesets). It may be tempting to use RL Functions for
computations, especially those that are reused many times; however, if such
computations are expected to change often, they should be modeled as Rulesets
Rules; reuse is possible through Inferencing or ruleset chaining.

It should be noted that Java methods might be used in place of Functions.
However, RL Functions have the benefit of being contained in the rule repository
and being interpreted – that is they do not require deployment of Java classes etc.
In addition, it is easier in RL Functions to access the rule artifacts such as variables.

Using Inferencing
As discussed in section Inferencing above, Inferencing is a powerful tool for
modular development of complex rules.

A natural scenario for inferencing is when one or more rules calculate an
intermediate result in the rule action. This intermediate result would be asserted as
a fact (or is a modification of an existing fact). This intermediate result is used in
the rule condition of other rules.

Inferencing may also be used to split complex rules into two or more simpler rules.
Rules conditions that are very complex increase the maintenance cost and reduce
possible reuse. Splitting a complex rule into multiple simpler rules may improve
both. Some of these simpler rules would need to assert intermediate facts (or
modify existing facts) as in the previous case.

In current release, you have to be careful that inferencing does not cause a rule to
fire itself, resulting in an infinite loop. In the example in Figure 10, rule 1 has an
additional test that income level is not high to avoid loop.

Enabling Business Users
Please see Business User Enablement with Oracle Business Rules above for a
discussion on the various options available and their appropriateness. This section
only adds some developer specific considerations to that discussion.

Oracle Business Rules: Technical Overview Page 17

Developer Considerations using Customization

Use list-of-value constraints to make it easier for the user to choose an appropriate
value from a small set. Use range constraints with numeric values to validate
changes.

Be careful not to require that two or more customizable values be the same.

Rule1: IF p.income > 100000 && p.isHomeOwner THEN
p.offerCeditCardColor = "platinum"

Rule2: IF p.income > 100000 && p.isRenter THEN
p.offerCreditCardColor = "gold"

Figure 9: Do not require two customizable values to be the same

The example shown in Figure 9 is a problem. It can be rewritten as shown in Figure
10 using inferencing.

Rule0: IF p.income > 100000 && p.incomeLevel != "high" THEN
p.incomeLevel = "high"; assert(p);

Rule1: IF p.incomeLevel == "high" && p.isHomeOwner THEN
p.offerCeditCardColor = "platinum"

Rule2: IF p.incomeLevel == "high" && p.isRenter THEN
p.offerCreditCardColor = "gold"

Figure 10: Rewriting Figure 9 using inference

Developer Considerations using Variables

Variables can be used for many purposes. There are two kinds of variables: final
and non-final. Final variables are initialized once (using their initialization
expression) and may not be changed. Final variables are an alternative to
customization to make rules easier to change. In the preceding example, one could
define a variable to avoid repeating the literal 100000.

final int HighIncomeThreshold = 100000

In current releases, Variable initialization expressions are not customizable so no
constraint can be associated with the value.

Non-final variables can be assigned to by rule actions (but cannot be used in rule
conditions), and are thus a way of returning results from rule execution.

Using right Fact Types
The context in which the rules engine is being used often dictates the fact type to
use:

• Decision Service - Using rules with BPEL or other Web Service clients as
Decision Service dictates that XML facts are used. If the business rules
need to work with existing Java fact types, please see section 18.5.3 of the
BPEL Developer’s guide (http://download-

Oracle Business Rules: Technical Overview Page 18

east.oracle.com/docs/cd/B31017_01/integrate.1013/b28981/decision.ht
m#sthref3261).

• Existing XML Schemas - Data model based on an XML Schema typically
dictates the use of XML fact types. However, if the application is already
using JAXB, JAXB classes generated externally to rules may also be
imported as regular Java facts.

• When the data model is based on a collection of Java classes, Java facts
will be used.

• RL fact types are most commonly used for facts representing intermediate
results.

Working with JAXB Numbers

JAXB maps XML integer type to java.math.BigInteger and the decimal type to
java.math.BigDecimal. If a rule uses the properties of such types, the two Java classes
have to be imported explicitly.

It is suggested to use XML int and double types instead in the XML Schema, in order
to avoid the step to import additional Java classes. If schema change is not
possible, JAXB customization can be used to map XML integer or decimal types to
primitive types. Details about JAXB customization can be found in JAXB
Specification (http://java.sun.com/xml/downloads/jaxb.html) section 6.

Oracle Business Rules: Technical Overview Page 19

PERFORMANCE CONSIDERATIONS
In most cases, writing of Rules should not require a focus on performance.
However, as in any technology, there are tips and tricks that can be used to
maximize performance when needed. Most of the considerations are around the
initial set up of the data model.

Use Java Beans
The rule engine is most efficient when the facts it is reasoning on are Java Beans (or
RL classes) and the associated tests involve bean properties. The beans should
expose get and set methods (if set is allowed) for each bean property. If
application data is not directly available in Java Beans, it may be desirable to flatten
the data to a collection of Java Beans that will be asserted as facts (and used in the
rules). Note that XML facts follow the Java Bean pattern and are ok regards
this consideration.

Assert Child Facts instead of Multiple Dereferences
Expressions like Account.Contact.Address involve more than one object dereference.
In a rule condition, this is not as efficient as expressions with single dereferences.
It is a best practice to flatten fact types as much as possible. If the fact type has a
hierarchical structure, consider using assertXPath or other means to assert object
hierarchy; that is for the preceding example, assert both Account and Contact as Fact
Types.

Avoid Side Affects in Rule Conditions
Methods or functions that have side affects such as changing a value or state should
not be used in a rule condition. Due to the optimizations performed when the rule
engine builds the Rete network and the Rete network operations that are performed
as facts are asserted, modified (and re-asserted), or retracted, the tests in a rule
condition may be evaluated a greater or lesser number of times than would occur in
a procedural program. Thus, if a method or function has side affects, those side
affects may be performed an unexpected number of times.

Avoid Expensive Operations in Rule Conditions
Expensive operations should be avoided in rule conditions. Expensive operations
would include any operation that involves I/O (disk or network) or even intensive
computations. In general, it is a best practice to avoid I/O or DBMS access from
the rules engine directly. These operations should be done external to the rules
engine. For other expensive operations or calculations, a best practice is to
perform the computations and assert the results as a Java or RL fact. These facts
are used in the rule conditions instead of the expensive operations.

Oracle Business Rules: Technical Overview Page 20

Pattern Ordering
Reordering rule patterns can improve the performance of rule evaluation in time,
memory use, or both. There are two main guidelines for ordering fact clauses
(patterns) within a rule condition.

• If a fact is not expected to change (or will not change frequently) during
rule evaluation, place its fact clause before fact clauses that change more
frequently. That is, order the fact clauses by expected rate of change from
least to greatest. Ordering fact clauses in this way can improve the
performance (time) of rule evaluation.

• If a fact clause (including any tests that involve only that fact) is expected
to match fewer facts than other fact clauses in the rule condition, place
that fact clause before the others. That is, order the fact clauses from
most restrictive (matches fewest facts) to least restrictive. This can reduce
the amount of memory used during rule evaluation. It may also improve
the performance.

Sometimes these two guidelines conflict and it may require some experimentation
to arrive at the best ordering.

Ordering of Tests in Rule Conditions
Similar to the recommendations for fact clauses, the tests in a rule condition should
be ordered such that a test that will be more restrictive is placed before a test that is
less restrictive. This will reduce the amount of computation required for facts that
do not satisfy the rule condition. If the degree of restrictiveness is not known or
estimated to be equal for a collection of tests, then the simpler tests should be
placed before more expensive tests.

AssertXPath and Supports XPath
Most of the work done by the rules engine is done during assert, retract, or modify
operations. In particular, the assertXPath method, though very convenient, may
have a performance overhead. The power of this method is not only that it asserts
the whole hierarchy in one call but also asserts some XLink facts for children facts
to link back to parent facts. However, if these features are not needed and it is
simply desired to assert a couple of levels as facts, it is better to turn off the
“Supports XPath” for the relevant fact types and then use a function to do custom
asserts.

function assertAllObjectsFromList(java.util.List objList)

{

 java.util.Iterator iter = objList.iterator();

 while (iter.hasNext())

 {

 assert(iter.next());

 }

Oracle Business Rules: Technical Overview Page 21

}

function assertExpenseReport (demo.ExpenseReport expenseReport)

{

 assert(expenseReport);

 assertAllObjectsFromList(expenseReport.getExpenseLineItem());

}
Figure 11: Instead of using assertXPath this example uses a function to assert
ExpenseReport and ExpenseLineItems

In 10.1.3.3, we will introduce "Enable improved assertXPath support for
performance" check box in the Dictionary Properties page in Rule Author.
Checking this switch will improve the performance of assertXPath. Taking
advantage of this will require that

• assertXPath is only invoked with an XPath expression of "//*". Any
other XPath expression will result in an RLIllegalArgumentException.

• XLink facts should not be used in rule conditions as the XLink facts will
not be asserted.

Separating Fact Types into Read-Only and Modifiable
Under the following circumstances, there may be a performance benefit in splitting
a fact type into read-only and modifiable fact types:

• The fact type contains properties that are tested in rule conditions but
never modified (read-only).

• The fact type contains some properties that are modified.

• The read-only properties are tested in a significant portion of the rules.

• The fact is re-asserted when a property is modified (for inferencing).

Splitting the fact type into a read-only and modifiable fact types will reduce the
work performed when the fact is modified. Note that there is no property or flag
to indicate a Fact type as read-only; this guidance only relates to the actual usage.

Rule Sessions Pooling
A typical rule session with a hundred rules takes a couple of seconds to initialize
(the rules must be compiled into a rete network), and may take just a fraction of a
second to execute. Therefore, an application that needs to run the same rules
against different facts should reuse rule sessions several times to amortize the
initialization cost. Note that the decision service automatically pools rule sessions.
It is the responsibility of the ruleset writer to ensure that each execution of rules
leaves the rule session reusable (or throws an Exception). The RL builtin function
"reset()" will normally prepare the rule session for reuse by retracting all facts in
working memory and re-running the initialization expressions of non-final global
variables. If there is additional reset work to do, a user can "register" an RL

Oracle Business Rules: Technical Overview Page 22

function or method to be called at reset time by defining an initialized non-final
variable as follows:

int resetHookVar = resetHookFcn()

The above will cause the RL function "resetHookFcn" to be called every time the
rule session is reused. Such a hook could be used to reassert any required initial
facts, or otherwise prepare for serial reuse.

Another trick that can be employed to avoid the cost of startup is to serialize the
session after first load and de-serialize it for subsequent sessions. This would also
require building in check to see when this cached session needs to be invalidated
(reloaded).

RuleSession ruleSession = null;

byte[] ba = null;

ruleSession = new RuleSession();

ruleSession.executeRuleset(dmRules);

ruleSession.executeRuleset(mainRules);

ByteArrayOutputStream fos = new ByteArrayOutputStream();

ObjectOutputStream oos = new ObjectOutputStream(fos);

oos.writeObject(ruleSession);

ba = fos.toByteArray();
Figure 12: Code fragment to serialize session after executing rulesets

ObjectInputStream s = new ObjectInputStream(

 new ByteArrayInputStream(ba));

ruleSession = (RuleSession)s.readObject();
Figure 13: Code Fragment to initialize session from serialized cache

CONCLUSION
Oracle Business Rules delivers on the promise of agility. It enables its customer to
change their business processes and other decisions rapidly, flexibly, and with
confidence. Oracle Business Rules enables involvement of Business Users in the
specification and maintenance of business rules. This document describes best
practices and considerations for extracting the most value from Oracle Business
Rules. Oracle Business Rules engine is a high performance engine and although this
document describes many performance tips, in most cases users need not be
concerned about performance implications.

Oracle Business Rules: Technical Overview
February 2007
Author: Manoj Das
Contributing Authors: Gary Hallmark

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2006, Oracle. All rights reserved.
This document is provided for information purposes only and the
contents hereof are subject to change without notice.
This document is not warranted to be error-free, nor subject to any
other warranties or conditions, whether expressed orally or implied
in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any
liability with respect to this document and no contractual obligations
are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle
Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

